Trees

What are real-life examples of where you’ve seen
sorting algorithms in action?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

. Sorting + Linked Data
Structure Overview

Today'’s
topics

Introduction to Trees

. Trees in C++

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we better

TOda.y S organize data stored in a
g uestions linked data structure?

Review

[sorting + linked data structures]

Sorting

e Sorting is a powerful tool for organizing data in a meaningful format!

e There are many different methods for sorting data:
o Selection Sort

Insertion Sort

Mergesort

Quicksort

And many more...

o O O O

e Understanding the different runtimes and tradeoffs of the different algorithms
is important when choosing the right tool for the job!

Sorting Big-O Cheat Sheet

Sort Worst Case | Best Case | Average Case
Insertion | O(n"2) O(n) O(n*2)
Selection | O(n*2) O(n*2) O(n"2)

Merge O(nlogn) |O(nlogn) [O(nlog n)

Quicksort | O(n"2) O(nlog n) [O(n log n)

https://www.toptal.com/developers/sorting-algorithms

> > > >

Play All Insertion Selection Bubble

v

Quick

>

Random

>

™ T
: ¥

I TV 2

I P

|||||||||' -ll | |||| |I
° '

T
A
: V¥

Nearly Sorted

>

Reversed

>

Few Unique

https://www.toptal.com/developers/sorting-algorithms

stdiistable sort (gos) - 0550 comparisons, 20300 array sccesses, 1,00 me delay Mttpc/pantheme net/2 01 N sound-of-sarting

http://www.youtube.com/watch?v=kPRA0W1kECg

Assignment 5:Linked List Tips

e When implementing the sorting algorithm on linked lists, it is strongly
recommended to implement helper functions for the divide/join components of
the algorithm.

o For quicksort this means having helper functions for the partition and concatenate operations

e Everything you write should be implemented iteratively.
o QuickSort is implemented recursively, but you’re only writing the individual components
o ForrunSort, both the overall sort and the individual components should be done iteratively.

e Write tests for your helper functions first! Then, write end-to-end tests for your
sorting function.

Linked Data Structures

e Last week, we explored linked lists, our first example of a

Linked Data Structures

e Last week, we explored linked lists, our first example of a

California’

Data / Data / Data /(NULLPTR
Link Link Link

Linked Data Structures

e Linked data structures are distinguished by the fact that they stored data in a
manner. This means that the data is stored across many different
locations in computer memory.

Linked Data Structures

e In order to organize this data, we had to in the
concept of a "node."

Linked Data Structures

e Using pointers allows us to to other nodes to impose structure.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct

advantages over working with arrays.

o Insertion/removal of elements of a linked list was very quick because it only
involved fast pointer rewiring operations. We never had to "shift" elements over to
make room.

o Because all the data was stored in dynamic memory, expanding the size of the
linked list was very easy and never required an expensive "re-sizing" operation that
had to copy all the data.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:
o Data was organized in a linear structure, which meant the path to traverse between
any two nodes (specifically between the front and a node later on in the list) could

get very long.
o Finding elements in a linked list is an 0(n) operation, which can get slow when we

want to store many elements.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists:
o Data was organized in a linear structure, which meant the path to traverse between
any two nodes (specifically between the front and a node later on in the list) could

get very long.
o Finding elements in a linked list is an 0(n) operation, which can get slow when we

want to store many elements.
o We couldn't feasibly write recursive algorithms that traversed linked lists, due to
stack frame limits that came into play since traversal algorithms required one stack

frame per node.

Linked List Tradeoffs

e Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

e However, we also ran into some limitations when it came to working with lists.
° Can we organize data in a linked data structure in such a way that

the path between the "front" and any element in the structure is short (better
than 0(n)) even if there are many elements?

How can we better organize
data stored in a linked data
structure?

Interactive Exercise

[borrowed from Keith Schwarz]

Take a deep breath.

And exhale...

Feel nicely oxygenated?

Your lungs

have about

500 willion
alveoli..

Beavtiful art by Keith Schwarz

Your lungs

have about

500 willion
alveoli..

yet the
path o each
one is short,

The distance from each element in this structure to the
top of the structure is small, even if there are many elements.

branches

Trees

Throwback Thursday (on Monday)

e We've already seen trees before in this class... decision trees!

Throwback Thursday (on Wednesday)

e We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car

o L /1\ N T B

It at ar it ¢t cr at ¢t ca ar cr ca
YAV AV A N A N A N A A N A W A VY AV ANV AN

Nl BE BE 1 e e e e e Il e .

Throwback Thursday (on Wednesday)

e We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car

o L /1\ N T B

It at ar it ¢t cr at ¢t ca ar cr ca
YAV AV A N A N A N A A N A W A VY AV ANV AN

Nl BE BE 1 e e e e e Il e .

Throwback Thursday (on Wednesday)

e We've already seen trees before in this class... decision trees!

cart

art cat car

o L /1\ N T B

It at ar it ¢t cr at ¢t ca ar cr ca
YAV AV A N A N A N A A N A W A VY AV ANV AN

Nl BE BE 1 e e e e e Il e .

Throwback Thursday (on Wednesday)

e We've already seen trees before in this class... decision trees!

cart
/ \
art cat Car
nm at ar it ¢t cr at ¢t ca ar cr ca
/N L\ —% 7Y 7% 7§ /Y JY 2y Fr—A /N
Nl NE e 1 3 | | e e e I e e

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

[rees can be
uced to describe

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

‘/ \

[rees are uced
to model the

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

[rees deccribe
def run() { @ the syntax
move(); . J
while (notFinished()) { ey ///z R\\\ while
if (isPathClear()) { @ @
move(); if/else/ \

} else { move
turnLeft(); D @
} 1sPathClear

move();

} @ move turnLeft
} H D

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

e But, it is not a coincidence that we first saw them appear in conjunction with

recursion.

Trees in the Wild

e Trees are useful in other ways besides just visualizing recursive backtracking.

e But, it is not a coincidence that we first saw them appear in conjunction with
recursion.

e Trees are inherently defined recursively!

What is a tree?

A tree is either...

What is a tree?

A tree is either...

An empty data

structure, or...

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

tree
A tree is hierarchical data organization
structure composed of a root value
linked to zero or more non-empty
subtrees.

Tree Terminology

Tree Terminology

Tree Terminology

A

Tree Terminology 2 with O o

A more non-empty

Tree Terminology 2 with O o

A more non-empty

Tree Terminology 2 with O o

A more non-empty

ONOR(O)NONO

Tree Terminology 2 with O o

A more non-empty

ONONORONO

Tree Terminology 4

with 0 or

more non- empz‘y

Q

Tree Terminology

Tree Terminology 2 the

A of the tree

Tree Terminology

BCDE andF
K\ OI[A

B C D E F

ofcYo

Tree Terminology A ic the of

A BCD E and F

Tree Terminology B has no children. A

node with no children
° i¢ called a :
JNONONONO

Tree Terminology B6HLDE] and
(are all

i G, H and I all have the
Tree Terminology come parent. MNodes

° with the came parent
are .

We can define a
through the

° tree between two

nodes.

Tree Terminology

We can define a
through the

° tree between two

nodes.

We can only follsw the links in the direction the arrow points! ‘

Tree Terminology

[he From A to
(icA->F->K->
A (

POt

Tree Terminology

. The of the path ic
Tree Terminology namber of edges it
confaing. The path from
A to (has length 3.

D & & © C
OJ010 CS

Tree Terminology The of a node ic the
° length of its path fo the

root.

Tree Terminology The of a node ic the
length of its path fo the

root.

depth: O A

Tree Terminology The of a node ic the
length of its path fo the

depth: O root.

depth: 1 B C D E F

Tree Terminology The of a node ic the
length of its path fo the

depth: O

depth: 1

depth: 2 G H I J K

Tree Terminology The of a node ic the
° length of its path fo the

depth: O root.

depth: 3 L

Tree Terminology The of a tree ic
defined to be the number
° of levele that a free has.

The can afco be defined

Tree Terminology 2¢ the number of nodec along
° the longest path from the

root fo a leaf.

Tree Terminology

The can afco be defined
a¢ the number of nodes along
the longest path from the
root fo a leaf.

Tree Terminology

The can afco be defined
a¢ the number of nodes along
the longest path from the
root fo a leaf.

height = 4

Tree Terminology Summary

e Every non-empty tree has a that defines the "top" of the tree.

e Every node has O or more nodes descended from it. Nodes with no
children are called

e Every node in a tree has exactly one node (except for the root node).

o A through the tree traverses edges between parents and their children.

e The of a node is the length of the path between the root and that node.
A tree's is the number of nodes in the longest path through the tree.

Tree Properties

Tree Properties

e Any node in a tree can only have one parent.

Tree Properties

e Any node in a tree can only have one parent.

Tree Properties

e Any node in a tree can only have one parent.

/Vot a tree!

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

Tree Properties

e Any node in a tree can only have one parent.

e The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

° ° A/ot o tree!

Which of these are trees? pollev.com/cs106bpoll

eAa o

E:

000

Announcements

Announcements

e Final project feedback was released this weekend!

o Some of you may have received feedback requesting that you meet with one of us in order to

receive full credit.
e FEveryone is welcome to come to office hours this week
o Trip’s Group OH on Friday, 8/5, from 10AM-12PM in HuangO19
e Final project write-up due THIS Sunday, August 7. No grace period.

e General feedback:

o Very creative ideas!

o Don’t overscope (aka don’t bite off more than you can chew)

Announcements

e Assignment 5 is due tomorrow at 11:59 pm (with 24 hour grace period).
e Assignment 4 revisions due this Friday at 11:59 pm.

e Assignment 6 comes out Wednesday!

e Due to the end of quarter timeline, there will be no revisions on Assignments 6.

Announcements

We’re so close!

Aug1l-
Trees

Reading: 16.1

Aug2-
Binary Search Trees

Reading: 16.2-16.4

Aug3-
Huffman Coding

Reading: Supplemental

Aug4 -

Hashing

(HashMap/HashSet vs.

Map/Set)

Aug5

Aug7
Final project
writeup is due

Info in Assignment (Sunday, Aug 7,
HWS5 Due Handout Reading: 15.3 HARD DEADLINE)
HWS5 Grace; HW6 Out
Aug 8 - Aug9 - Aug 10 - Aug11- Aug 12
Fun Multithreading with Trip Life after CS106B Final
Final Presentations Presentations
Reading: Chapter 18 HWé6 Due (HARD

DEADLINE, NO GRACE)

Trees in C++

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

e However, when working with trees in computer programs, it is common to

work mostly with

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

e However, when working with trees in computer programs, it is common to
work mostly with

o A is a tree where every node has either O, 1, or 2 children. No node
in a binary tree can have more than 2 children.

Binary Trees

e In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

e However, when working with trees in computer programs, it is common to
work mostly with

o A is a tree where every node has either O, 1, or 2 children. No node
in a binary tree can have more than 2 children.

e Typically, the two children of a node in a binary tree are referred to as the
and the

Binary Trees

Binary Trees

Binary Tree!

Binary Trees
Binary Tree! 0

Binary Trees

Binary Tree!

Building Trees Programmatically

e To build atree in C++, we need a new version of the Node struct we've seen
before.

Building Trees Programmatically

Wait... didn’t we already build a binary tree in PQHeap?

Binary heaps + implementation

("a", 4} Parent index: O
Left child: 1
L PR Right child: 2
{"b", 6} ["c"’ 8}

N

{l'd l" 7} {”e"’ 9}

a4 (b6} | (e8| a7y | ren9)

0 1 2 3 4

Building Trees Programmatically

e To build atree in C++, we need a new version of the Node struct we've seen
before.

e In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

Building Trees Programmatically

e To build atree in C++, we need a new version of the Node struct we've seen
before.

e In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

struct TreeNode {
string data;
TreeNode* left;
TreeNode* right;

)
D

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

What is a tree in C++7?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

What is a tree in C++7?

A tree is either...

An empty tree Cotifoorin
represented by 'NULLPTR
nullptr, or..

A single node
(parent), with zero or
more non-empty
subtrees (children)

What is a tree in C++7?

A tree is either...

An empty tree Cotifoorin
represented by 'NULLPTR
nullptr, or..

"data”
A single TreeNode, =

with O, 1, or 2 Vad A

® @

non-null pointers to
other TreeNodes

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;
}

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;
}

Califorria’

NULLPTR

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

"pineapple”

Califormia’

NOLEere| N i

L

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

"pineapple”

Califormia’

NOLEere| N i

L

"coconut"

Nil] Wi

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

}
"pineapple”
e | ik

/

"coconut"

Nil] Wi

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

}
"pineapple”
e | ik

/

"coconut"
Coaliforria’
/ |[NULlpme

"banana"

Nil] Wi

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

}
"pineapple”
e | il
"coconut"
"banana" "durian"

Nilre] i ers Nilre] i

struct TreeNode {
string data;
TreeNode* left;
TreeNode* right;

Building Trees Programmatically

}
"pineapple”
"coconut" "strawberry"
Coliforria Cobiforria
NULIPtR] NULLete|

—

"banana" "durian"
Cndforrir Codforrir Cndforrir Codforrir
il Nt Wil Nt

TN

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

}
"pineapple”
"coconut" "strawberry"
/ \ :ﬂmﬁml .\\
"banana” "durian” "taro"

NiLle] NGt Nt Nt Nitlr] Wi

Building Trees Programmatically

"pineapple”

0 |

struct TreeNode {

string data;
TreeNode* left;
TreeNode* right;

/

"coconut"

"banana"

Nilre] i ers

"durian”

Nilre] i

Note: Trees do not have to be complete, like heaps.

~.

"strawberry"

:ﬂﬁﬁi_’gm | ‘\

T~

"taro"

Cotiforrin (Coliforriin]
NoLiere| NOLiewe

node can have 0, 1, or 2 children.

Let's code it!
buildExampleTree()

Building a Tree Takeaways

e Building a tree is very similar to the process of building a linked list.

e \We create new nodes of the tree by dynamically allocating memory.

e We integrate these new nodes into the tree by rewiring the 1left and right
pointers of existing nodes in the tree.

Tree Traversals

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by . With the branching involved, this is a
slightly more involved process than traversing a linked list!

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by . With the branching involved, this is a
slightly more involved process than traversing a linked list!

® There are three main ways to traverse a binary tree:
o Pre-order traversal
o In-order traversal
o Post-order traversal

Tree Traversals

e Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by . With the branching involved, this is a
slightly more involved process than traversing a linked list!

® There are three main ways to traverse a binary tree:
o Pre-order traversal
o In-order traversal
o Post-order traversal

e Due to the recursive nature of trees, all of these algorithms are most easily
defined

Pre-order Traversal

e The algorithm for a pre-order traversal is defined as follows:
o "Do something" with the current node
o Traverse the left subtree
o Traverse the right subtree

e [or example purposes, let's have our "do something" to be printing the
contents of the current node, which will allow us to print the overall tree.

Let's code it!
preorderPrintTree()

Pre-order Traversal

e The algorithm for a pre-order traversal is defined as follows:
o "Do something" with the current node
o Traverse the left subtree
o Traverse the right subtree

e [or example purposes, let's have our "do something" be printing the contents
of the current node, which will allow us to print the overall tree.

e Output: pineapple coconut banana durian strawberry taro

In-order Traversal

e The algorithm for an in-order traversal is defined as follows:
o Traverse the left subtree
o "Do something" with the current node
o Traverse the right subtree

Let's code it!
inorderPrintTree()

In-order Traversal

e The algorithm for an in-order traversal is defined as follows:
o Traverse the left subtree
o "Do something" with the current node
o Traverse the right subtree

e Output: banana coconut durian pineapple strawberry taro
e Observation: The output of this traversal gives as all the values in alphabetical

order. Is this a coincidence?
o No! We'll see why this week!

Post-order Traversal

e The algorithm for a post-order traversal is defined as follows:
o Traverse the left subtree
o Traverse the right subtree
o "Do something" with the current node

Try it yourself!

postorderPrintTree()

Pre-order

do something (aka cout)
traverse left subtree
traverse right subtree

521489

In-order

traverse left subtree
do something (aka cout)
traverse right subtree

124589

Post-order

traverse left subtree
traverse right subtree
do something (aka cout)

142985

Summary

Trees Summary

e Trees allow us to organize information in a linked data structure such that the
distance to any element is short, even if there are many elements.

e T[rees organize nodes in a hierarchical manner, where each element contains
connections to children nodes that exist "lower" in the tree.

e There are three main ways to traverse the nodes in a tree, and each type of
traversal visits the nodes of the tree in a distinctly different order.

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

analysis problem-solving

What’s next?

Mannnnn, we spent a whole lecture on traversing a
tree. When are we going to do something with a tree
besides print it out??

Binary Search Trees

2 | 4

10

14

